Tumor Treating Fields Perturb the Localization of Septins and Cause Aberrant Mitotic Exit

نویسندگان

  • Nidhi Gera
  • Aaron Yang
  • Talia S. Holtzman
  • Sze Xian Lee
  • Eric T. Wong
  • Kenneth D. Swanson
  • Claude Prigent
چکیده

The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of Alternating Electric Fields Therapy (NovoTTF Therapy) for the Treatment of Malignant Glioma

As with many cancer treatments, tumor treating fields (TTFields) target rapidly dividing tumor cells. During mitosis, TTFields-exposed cells exhibit uncontrolled membrane blebbing at the onset of anaphase, resulting in aberrant mitotic exit. Based on these criteria, at least two protein complexes have been proposed as TTFields' molecular targets, including α/β-tubulin and the septin 2, 6, 7 het...

متن کامل

A Novel Function of Saccharomyces cerevisiae CDC5 in Cytokinesis

Coordination of mitotic exit with timely initiation of cytokinesis is critical to ensure completion of mitotic events before cell division. The Saccharomyces cerevisiae polo kinase Cdc5 functions in a pathway leading to the degradation of mitotic cyclin Clb2, thereby permitting mitotic exit. Here we provide evidence that Cdc5 also plays a role in regulating cytokinesis and that an intact polo-b...

متن کامل

Control of Lte1 Localization by Cell Polarity Determinants and Cdc14

BACKGROUND The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis. Lte1 is present...

متن کامل

Septins Have a Dual Role in Controlling Mitotic Exit in Budding Yeast

In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF L...

متن کامل

The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast.

During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015